editing disabled

7L 8s refers to a Moment of Symmetry scale with 7 large steps and 8 small steps. One especially notable temperament that falls into this MOS pattern is porcupine, of the porcupine family.

Generator
octachord
g
2g
3g
4g
5g
6g
7g
Comments
2\15




1 1 1 1 1 1 1
160
320
480
640
800
960
1120





9\67
4 5 4 5 4 5 4
161.2
322.4
483.6
644.8
806
967.2
1128.4




7\52

3 4 3 4 3 4 3
161.5
323.1
484.6
646.2
807.7
969.2
1130.8



5\37


2 3 2 3 2 3 2
162.2
324.3
486.5
648.6
810.8
973
1135.1
Optimal rank range (L/s=3/2) porcupine





2 pi 2 pi 2 pi 2
162.4
324.8
487.2
649.6
812
974.4
1136.8





13\96
5 8 5 8 5 8 5
162.5
325
487.5
650
812.5
975
1137.5






1 phi 1 phi 1 phi 1
162.6
325.1
487.7
650.2
812.8
975.35
1137.9
Golden porcupine when L/s=phi



8\59

3 5 3 5 3 5 3
162.7
325.4
488.1
650.8
813.6
976.3
1139






1 √3 1 √3 1 √3 1
162.9
325.9
488.7
651.6
814.55
977.5
1140.4


3\22



1 2 1 2 1 2 1
163.6
327.3
490.9
654.5
818.2
981.8
1145.5
Boundary of propriety (generators
smaller than this are proper)



7\51

2 5 2 5 2 5 2
164.7
329.4
494.1
658.8
823.5
988.2
1152.9






1 phi+1 1 phi+1 1 phi+1 1
164.9
329.8
494.75
659.7
824.6
989.5
1154.4





11\80
3 8 3 8 3 8 3
165
330
495
660
825
990
1155






1 e 1 e 1 e 1
165.1
330.2
495.3
660.3
825.4
990.5
1155.6
L/s=e


4\29


1 3 1 3 1 3 1
165.5
331
496.6
662.1
827.6
993.1
1158.6






1 pi 1 pi 1 pi 1
165.7
331.4
497.1
662.85
828.5
994.3
1160
L/s=pi



5\36

1 4 1 4 1 4 1
166.7
333.3
500
666.7
833.3
1000
1166.7





6\43
1 5 1 5 1 5 1
167.4
334.9
502.3
669.8
837.2
1004.65
1172.1

1\7




0 1 0 1 0 1 0
171.4
342.9
514.3
685.7
857.1
1028.6
1200